ADP stimulates IP₃ formation in human platelets

James L. Daniel, Carol A. Dangelmaier, Mary Selak and J. Bryan Smith

Temple University, Pharmacology Department and Thrombosis Research Center, 3400 N Broad Street, Philadephia, PA 19140, USA

Received 4 August 1986

Aspirinated human platelets labeled with ³²PO₄ showed a 1.7-fold increase in [³²P]IP₃ when stimulated with ADP. ADP-stimulated mobilization of internal Ca²⁺ and phosphorylation of myosin were enhanced in the presence of extracellular Ca²⁺ but the increase in IP₃ was not significantly affected by external Ca²⁺. The Ca²⁺ ionophore, ionomycin, elevated internal Ca²⁺ and induced myosin phosphorylation without a detectable change in IP₃. These results indicate that the mechanism of ADP stimulation of human platelets is similar to that of other platelet agonists and supports the theory that IP₃ functions to liberate internal Ca²⁺.

(Platelet) Polyphosphoinositide Inositol triphosphate Myosin phosphorylation Ca²⁺
Phosphatidic acid

1. INTRODUCTION

Activation of platelets with agonists is thought to occur through an elevation of intracellular calcium which can now be measured directly using intracellular Ca²⁺ indicators such as quin2 [1]. Agonist-induced rises in cytoplasmic free calcium occur in the absence of external calcium indicating that calcium can be liberated from internal stores. The mechanism by which an agonist acting at the plasma membrane can release calcium from internal stores was at first obscure. Binding of an agonist to a receptor often results in the turnover of PI and its phosphorylated derivatives PIP and PIP₂ [2]. The earliest measurable change in phosphoinositides is a rapid breakdown and resynthesis of PIP₂ [2], a characteristic pattern shown to occur in platelets stimulated with thrombin and PAF [3-5]. The cleavage of PIP₂ involves a

Abbreviations: PI, phosphatidylinositol; PIP, phosphatidylinositol 4-phosphate; PIP₂, phosphatidylinositol 4,5-phosphate; IP₃, inositol 1,4,5-triphosphate; PAF, platelet activating factor

specific phospholipase C and results in the production of diacylglycerol and IP₃ [2]. Agonist-induced IP₃ release has been demonstrated for thrombin, collagen, PAF and vasopressin [6–10]. IP₃ has been shown to be a potential second messenger and link between the activation of plasma membrane receptors and the mobilization of calcium from intracellular reservoirs [11–13]. These data strongly indicate that agonist-dependent activation of a specific phospholipase C results in an increase in cytoplasmic concentration of IP₃ which in turn causes an elevation in cytoplasmic Ca²⁺ necessary for subsequent activation of the platelets.

In recent experiments, Fisher et al. [14] failed to detect a hydrolysis of ³²P-labeled PIP₂ when human platelets were stimulated with ADP. Furthermore, when platelets were labeled with [³H]-inositol, these investigations also failed to detect an ADP-stimulated increase in [³H]IP₃. In a different set of experiments, they showed that ADP stimulated an increase in cytoplasmic Ca²⁺ in platelets loaded with quin2. Since these data pose a serious challenge to the idea that IP₃ is required to release Ca²⁺ from intracellular stores, we decid-

ed to reexamine the question of whether IP₃ is formed during platelet stimulation by ADP. We have used both an improved method for measuring IP₃ formation in ³²P-labeled platelets [15] and the new intracellular fluorescent Ca²⁺ indicator fura-2 [16] to monitor Ca²⁺ mobilization and IP₃ formation in the same cells. We have found that ³²P-labeled IP₃ levels increase almost 2-fold over basal levels supporting the idea that IP₃ formation is necessary for agonist-dependent Ca²⁺ mobilization.

2. MATERIALS AND METHODS

2.1. Materials

Hirudin, ADP, inositol triphosphate were obtained from Sigma (St. Louis, MO). Apyrase was a gift of Dr W. Figures of the Thrombosis Res. Ctr. Fura-2 was obtained from Molecular Probes (Junction City, OR), ionomycin from Calbiochem-Behring (La Jolla, CA) and bovine thrombin was from Armour Pharmaceutical (Kankakee, IL).

2.2. Preparation of ³²PO₄, fura-2-labeled platelets Human blood was taken from informed healthy volunteers into acid/citrate/dextrose. Platelet-rich plasma obtained by centrifugation at $180 \times g$ for 15 min at ambient temperature was recentrifuged $(800 \times g, 15 \text{ min}, \text{ ambient temperature})$. The platelet pellet was resuspended in 0.5 vol. of autologous platelet-poor plasma and incubated with ³²PO₄ (0.25 mCi/ml; ICN, Irvine, CA) at 37°C. After 30 min, fura-2 and aspirin were added to concentrations of 5 μ M and 1 mM, respectively, and the incubation continued for another 30 min. The platelets were isolated from the incubation medium by centrifugation (800 \times g, 15 min) and resuspended in a buffer composed of 145 mM NaCl, 5 mM KCl, 1 mM MgSO₄, 0.5 mM NaH₂PO₄, 5 mM glucose, 10 mM Hepes (pH 7.4), 0.01 U/ml hiridin and 0.5 ng/ml apyrase. The cell suspension was adjusted to a final density of $2 \times$ 10⁸ cells/ml.

2.3. Stimulation of platelets and analytical procedures

Prior to all experiments, platelets were checked for shape change by addition of 20 μ M ADP to the platelets in a Payton aggregometer. For all experimental determinations, agonists were added to

a prewarmed (37°C) and stirred platelet suspension in a Perkin Elmer LS-5 trofluorometer. Changes in fura-2 fluorescence were followed using an excitation of 340 nm and emission of 510 nm. At various times during the Ca²⁺ transient, the excitation wavelength was momentarily switched to 380 nm and the cytosolic free [Ca²⁺] was calculated from the ratio of 340 nm/380 nm fluorescence as described [16,17]. Reactions were stopped either by addition of 1 ml of ice-cold 2.1 N HClO₄ for myosin phosphorylation and IP₃ determinations or, for phospholipid determinations, by addition of an aliquot of the platelet suspension to 3.75 vols of ice-cold chloroform/methanol (1:2, v/v) containing 25 mM sodium EDTA.

Samples treated with HClO₄ were separated into supernatant and pellet by centrifugation at $10000 \times g$ for 10 min. The pellet was used for determination of myosin phosphorylation as described [18]. The supernatant was neutralized by adding an appropriate volume of 6 N KOH and the amount of 32P-labeled IP3 formed was determined as described [15]. Samples for phospholipid analysis were resolved oxalate-treated thin layer plates (Merck, Darmstadt, silica gel 60) using the solvent system, chloroform/acetone/methanol/ glacial acetic acid/H₂O (40:15:13:12:7 by vol.) [19]. The resolved phospholipids were detected by radioautography and the radioactivity of the pertinent compounds measured by liquid scintillation counting.

3. RESULTS

3.1. Measurement of ADP-induced inositoltriphosphate production

In our experience, the response of platelets to ADP can be variable and dependent on the method of platelet isolation. Thus, after labeling the platelets with fura-2 and ³²PO₄, each platelet suspension was tested for its shape change response to ADP in an aggregometer. The preparations that were responsive were studied in the fluorometer and, in all cases, stimulation with ADP caused an increase in cytoplasmic free Ca²⁺. The same samples in which Ca²⁺ mobilization was determined were used to measure levels of ³²P-labeled IP₃ and myosin phosphorylation. The results of 5 experiments are summarized in fig.1.

ADP induced a rapid increase in IP₃ to about 1.7-fold above the basal level in 5 s. A paired Student's t-test of this data showed that at all times the increase was statistically significant at least at the 95% level and that the initial rise (t = 5 s) was significant at the 99.5% confidence level. For comparison, thrombin (1 U/ml) in a single experiment was found to cause a 3.2-fold increase in IP₃ in 5 s

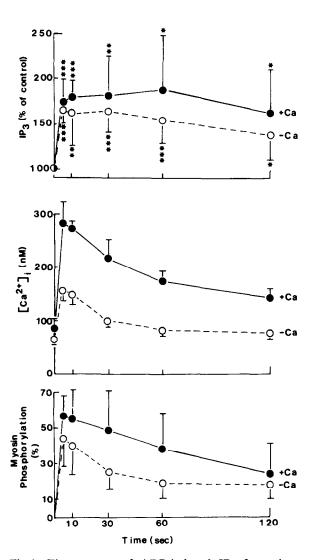


Fig. 1. Time course of ADP-induced IP₃ formation, Ca^{2+} mobilization and myosin phosphorylation. All experiments were done using 20 μ M ADP on the same set of platelet samples. The bars indicate SD of 5 experiments. For IP₃ determinations, significance at any time relative to basal is indicated: *p < 0.5; **p < 0.01; *** p < 0.005.

and a maximum 9.2-fold increase at 60 s. The ADP-induced increase in IP3 was paralleled by rapid changes in both cytoplasmic Ca2+ levels and myosin phosphorylation. The increase in internal Ca²⁺ and the extent of myosin phosphorylation were dependent on extracellular Ca2+, differences for myosin phosphorylation that were statistically significant at 10, 30 and 60 s. In contrast, there was no statistical significance between the ADPinduced increase in IP3 levels in the presence or absence of external Ca²⁺. In addition, 200 nM ionomycin elicited a greater increase in cytoplasmic Ca²⁺ than ADP and comparable levels of myosin phosphorylation but caused no significant increase in IP₃ formation (103 \pm 15% at 5 s and $101 \pm 20\%$ at 10 s; n = 6).

3.2. ADP-induced changes in phosphoinositide metabolism

ADP caused neither an increase nor decrease in ³²P-labeled PIP or PIP₂ (table 1) confirming the results of Fisher et al. [14]. In contrast, a slight increase in ³²P-labeled PI (about 25%) was detected and more strikingly (table 1), ADP caused a 2.2-fold increase in ³²P-labeled PA. By comparison, thrombin (1 U/ml) was found to increase the ³²P-labeled PA level about 17-fold in 2 min in platelets from the same group of donors.

4. DISCUSSION

We have shown that ADP stimulation of aspirinated human platelets is able to induce an increase in both ³²P-labeled IP₃ and ³²P-labeled PA. The magnitudes of these increases are both approx. 6-fold lower than produced by 1 U/ml thrombin and are consistent with the generally accepted view that ADP is a weak agonist compared to thrombin. However, since thrombin liberates sufficient IP3 to achieve an intracellular concentration of greater than 10 μ M [7,15], stimulation with ADP would produce enough IP3 to nearly saturate the IP₃ sensitive internal store of platelets which has a K_m of 1 μ M in saponized platelets [13]. The lower level of phosphoinositide metabolism induced by ADP can explain the lack of an initial decrease in PIP₂. At a lower level of phospholipase C activation, the hydrolysis of PIP₂ may be compensated by resynthesis from PI.

Both the ADP-stimulated increase in in-

Table 1

Changes in platelet phosphoinositides induced by ADP compared to thrombin and ionomycin

Agonist	Phospholipid	5 s	10 s	30 s	60 s	120 s
ADP						
	PIP_2	99 ± 11	107 ± 7	108 ± 12	105 ± 7	102 ± 8
	PIP	94 ± 9	102 ± 7	102 ± 7	106 ± 9	109 ± 7
	PΙ	99 ± 12	106 ± 11	105 ± 11	109 ± 11	123 ± 16
	PA	116 ± 12	140 ± 16	190 ± 20	219 ± 21	216 ± 25
Thrombin						
	PA	310 ± 64	510 ± 138	993 ± 180	1369 ± 239	1731 ± 271
Ionomycin						
•	PA	101 ± 12	109 ± 9	100 ± 8	124 ± 10	115 ± 14

Results are expressed as mean percentages of resting levels \pm SD of 4 determinations for ADP (20 μ M), 2 for thrombin (1 U/ml) and 3 for ionomycin (200 nM)

tracellular Ca²⁺ and myosin phosphorylation were enhanced in the presence of extracellular Ca²⁺. In contrast, the level of IP₃ produced in these cells was not greatly affected by the extracellular Ca²⁺ concentration. These results suggest that IP₃ was not produced as a consequence of Ca²⁺ mobilization but rather is consistent with a causal role for IP₃ in Ca²⁺ mobilization. Furthermore, ionomycin which increases intracellular Ca²⁺ by bypassing receptor-dependent mechanisms does not increase either PA [20] or IP₃.

The failure of Fisher et al. [14] to detect an ADP-stimulated increase in IP₃ cannot be attributed solely to our use of a more sensitive method to measure IP₃ since we were able to detect an increase in ³²P-labeled PA by a similar technique to that used by Fisher et al. [14]. In our experiments, we measured both Ca²⁺ mobilization, myosin phosphorylation and IP₃ in the same samples thereby assuring internal consistency and identical cellular responsiveness. In the studies of Fisher et al. [14], Ca²⁺-mobilization and IP₃ release were measured in different preparations of platelets.

Vickers et al. [21] studying rabbit platelets found that ADP did cause a significant decrease in PIP₂. Other platelet agonists, which appear to be only quantitatively different from ADP, have been shown to cause increases in IP₃. Rather than invoking different mechanisms for different

agonists, it is more satisfactory to propose that only one basic mechanism of stimulus-response coupling is operative for all agonists and while there may be quantitative differences between platelets from different mammalian species, the cells are qualitatively similar. The data presented here demonstrate that ADP conforms to the pattern common to other platelet agonists.

ACKNOWLEDGEMENTS

This work was supported by grants HL-14217 and BSRG S07 RR05417 from the NIH. We thank Dr David Purdon for advice and criticism during preparation of this manuscript.

REFERENCES

- [1] Rink, T.J. and Hallam, T.J. (1984) Trends Biochem. Sci. 9, 215-219.
- [2] Berridge, M.J. (1984) Biochem. J. 220, 345–360.
- [3] Billah, M.M. and Lapetina, E.G. (1982) J. Biol. Chem. 257, 12705-12708.
- [4] Imai, A., Nakashima, S. and Nozawa, Y. (1983) Biochem. Biophys. Res. Commun. 110, 108-115.
- [5] Mauco, G., Chap, H. and Douste-Blazy, L. (1983) FEBS Lett. 153, 361-365.
- [6] Agranoff, B.W., Murthy, P. and Seguin, E.B. (1983) J. Biol. Chem. 258, 2076-2078.
- [7] Rittenhouse, S.E. and Sasson, J.P. (1985) J. Biol. Chem. 260, 8657-8660.

- [8] Watson, S.P., Reep, B., McConnell, R.T. and Lapetina, E.G. (1985) Biochem. J. 226, 831-837.
- [9] Shukla, S.D. (1985) Arch. Biochem. Biophys. 240, 674-681.
- [10] Siess, W., Stifel, M., Binder, H. and Weber, P.C. (1986) Biochem. J. 233, 83-91.
- [11] Streb, H., Irvine, R.F., Berridge, M.J. and Schulz, I. (1983) Nature 306, 67-69.
- [12] Burgess, G.M., Godfrey, P.P., McKinney, J.S., Berridge, M.J., Irvine, R.F. and Putney, J.N. (1984) Nature 309, 63-66.
- [13] Brass, L.F. and Joseph, S. (1985) Biochem. J. 260, 15172-15179.
- [14] Fisher, G.J., Baksian, S. and Baldassarre, J.J. (1985) Biochem. Biophys. Res. Commun. 129, 958-964.

- [15] Dangelmaier, C.D., Daniel, J.L. and Smith, J.B. (1986) Anal. Biochem. 154, 414-419.
- [16] Grynkiewicz, G., Peonie, M. and Tsien, R.Y. (1985) J. Biol. Chem. 260, 3440-3450.
- [17] Tsien, R.Y., Rink, T.J. and Peonie, M. (1985) Cell Calcium 6, 145-157.
- [18] Daniel, J.L., Molish, I.R. and Holmsen, H. (1981)J. Biol. Chem. 256, 7510-7514.
- [19] Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A. and Grispen, W.H. (1981) Biochem. J. 194, 283-291.
- [20] Rittenhouse, S.E. and Horne, W.C. (1984) Biochem. Biophys. Res. Commun. 123, 393-397.
- [21] Vickers, J.D., Kinlough-Rathbone, R.L. and Mustard, J.F. (1982) Blood 60, 1247-1250.